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Abstract

Background: Financial advice from experts is commonly sought during times of uncertainty. While the field of
neuroeconomics has made considerable progress in understanding the neurobiological basis of risky decision-making, the
neural mechanisms through which external information, such as advice, is integrated during decision-making are poorly
understood. In the current experiment, we investigated the neurobiological basis of the influence of expert advice on
financial decisions under risk.

Methodology/Principal Findings: While undergoing fMRI scanning, participants made a series of financial choices between
a certain payment and a lottery. Choices were made in two conditions: 1) advice from a financial expert about which choice
to make was displayed (MES condition); and 2) no advice was displayed (NOM condition). Behavioral results showed a
significant effect of expert advice. Specifically, probability weighting functions changed in the direction of the expert’s
advice. This was paralleled by neural activation patterns. Brain activations showing significant correlations with valuation
(parametric modulation by value of lottery/sure win) were obtained in the absence of the expert’s advice (NOM) in
intraparietal sulcus, posterior cingulate cortex, cuneus, precuneus, inferior frontal gyrus and middle temporal gyrus. Notably,
no significant correlations with value were obtained in the presence of advice (MES). These findings were corroborated by
region of interest analyses. Neural equivalents of probability weighting functions showed significant flattening in the MES
compared to the NOM condition in regions associated with probability weighting, including anterior cingulate cortex,
dorsolateral PFC, thalamus, medial occipital gyrus and anterior insula. Finally, during the MES condition, significant
activations in temporoparietal junction and medial PFC were obtained.

Conclusions/Significance: These results support the hypothesis that one effect of expert advice is to ‘‘offload’’ the
calculation of value of decision options from the individual’s brain.

Citation: Engelmann JB, Capra CM, Noussair C, Berns GS (2009) Expert Financial Advice Neurobiologically ‘‘Offloads’’ Financial Decision-Making under Risk. PLoS
ONE 4(3): e4957. doi:10.1371/journal.pone.0004957

Editor: Alessandro Antonietti, Catholic University of Sacro Cuore, Italy

Received January 14, 2009; Accepted February 21, 2009; Published March 24, 2009

Copyright: � 2009 Engelmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funded by grants from NIDA (R01 DA016434 and R01 DA20116 to G.S.B. and T32 DA15040 to J.B.E.). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gberns@emory.edu

Introduction

Seeking advice from experts is common practice. The most

prominent situations in which people turn to experts for advice

occur under conditions of enhanced uncertainty, such as an

economic recession. During such times, people may feel unfit to

predict the consequences of their choices, and may seek the

counsel of experts to reduce the enhanced perception of risk. For

instance, when making investment decisions in a market

downturn, people often ask an expert, or a knowledgeable

colleague or friend for advice on where to invest their money.

While the field of neuroeconomics has made significant progress in

understanding the neurobiological basis of risk in decision-making

(for reviews see [1,2]), the neural impact of external information

on decision-making, such as advice from an expert, remains

unexplored. In the current experiment, we used functional

magnetic resonance imaging (fMRI) to investigate the neurobio-

logical basis of expert advice in a setting in which participants

made financial decisions under uncertainty and were free to

choose whether to follow or to ignore advice from a financial

expert. Individuals made a series of financial choices between a

certain payment and a lottery, while undergoing fMRI scanning.

Choices were made under two different conditions. In one

condition, advice from a financial expert was displayed, while in

the second condition, no advice was displayed (Figure 1). The

advice consisted of a recommendation from an expert economist

about which choice to make. Our framing attempted to maximize

the authoritativeness of the advice, with the purpose of creating a

high likelihood that the advice would influence decisions.

There are several possible mechanisms through which expert

advice could affect an individual’s decision-making process [3,4].

In particular, the impact of such advice may range along a

continuum from having no effect on internal decision-making

mechanisms to overriding them entirely. We hypothesized that

advice would lead to modulations of internal valuation mecha-

nisms engaged during choice, the effect of which we expected to be
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apparent both behaviorally and neurally. In the extreme, such

modulations might take the form of suppressing, or turning off an

individual’s valuation mechanisms entirely. This would indicate an

offloading of the burden of the decision-process to the expert. To

test this offloading hypothesis, and to investigate the nature of the

offloading process, we considered the following issues. 1) Does

expert advice influence individuals’ decisions? 2) What is the

pattern of brain activations associated with the receipt of expert

advice? 3) Is there a difference in brain activations between times

when individuals choose to follow the expert’s advice and when

they do not? And 4) Does receipt of the message change activation

patterns in brain regions associated with valuation computation

when a decision is made?

To investigate the behavioral effect of expert advice (question 1),

we compared decisions made during trials in which advice was

received (which we refer to as the MES condition) and not

received (the NOM condition). We used prospect theory [5] as a

framework for analyzing how choices were affected by the

presence of financial advice from an expert. Under this

framework, the value of the lottery is the multiplicative product

of the utility of each potential payoff and its subjectively weighted

probability, both of which are susceptible to transformations. In

particular, evidence suggests that subjects tend to overweight small

probabilities and underweight large probabilities of an event

[6,7,8,9]. In the current experiment, we investigated whether and

how probability weighting is affected by the expert’s advice.

The second question was addressed by comparing brain

activation patterns observed between the two conditions, MES

(advice present) and NOM (advice absent). While information

about the expert’s professional background and his decision

strategy were provided prior to the experiment in order to create a

basic level of trust towards the expert, the quality of such

information is not comparable to actual interactions with the

expert. The specific nature of the expert’s advice, which was

suboptimal, could only be inferred via repeated interactions

throughout the experiment. This process requires mental perspec-

tive-taking to infer the intentions and beliefs of the expert. Previous

research in the field of social cognitive neuroscience has repeatedly

Figure 1. Schematic representation and timing of MRI trial design. On each trial, participants were asked to choose between a sure win and
a lottery, either in the presence of advice from an expert (MESSAGE) or in its absence (NO MESSAGE). Advice from the expert economist was provided
on half the trials by way of placing the words ‘‘ACCEPT’’ above the option that the expert would choose and ‘‘REJECT’’ above the option that the
expert would not choose. In the NO MESSAGE condition, the expert’s advice was hidden by placing the words ‘‘UNAVAILABLE’’ above both options.
The probability of the lottery varied across seven probability conditions ranging from 1% to 99% and the amount of the sure win varied based on
decision weights estimated in a behavioral pre-scanning session using the PEST procedure. The self-paced decision period was followed by a 1-
second feedback period, which provided confirmatory information about which option was chosen by the participant. Finally, a jittered intertrial
interval that varied between 3 and 10 seconds was presented.
doi:10.1371/journal.pone.0004957.g001
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associated such mental prespective-taking with activations in

temporoparietal junction (TPJ) and medial prefrontal cortex

(MPFC) (e.g. [10,11,12,13,14]). We therefore hypothesized that

these regions (TPJ, MPFC) would be engaged when participants

considered advice from an expert.

The third question was addressed by investigating activations

when participants followed, compared to when they ignored,

advice provided by the expert economist. Ignoring the advice of an

expert may lead to enhanced conflict during the decision process

and increase the perceived risk associated with choice. On the

other hand, following the expert’s advice can be considered a

much safer option involving less emotional and cognitive conflict.

We therefore expected non-conformity with the expert’s advice to

lead to enhanced levels of conflict and arousal. To investigate the

neurobiological basis of this effect, we probed for differential

activation patterns as a function of whether participants followed

vs. ignored advice. Based on previous research [15], we expected

brain regions associated with negative affect and risk, such as the

anterior insula and amygdala, to show such enhanced activation

when participants went against the expert’s advice.

Finally, to investigate the neurobiological basis of the influence of

expert advice during risky decision-making, we focused on activations

in regions showing correlations with valuation and probability

computations. In agreement with the offloading hypothesis, we

expected signals reflective of value computations to be attenuated

in the presence of expert advice. According to prospect theory, value

computations reflect the multiplicative product of the utility of each

potential payoff and its subjectively weighted probability. We

expected the presence of expert advice to modulate the neural

correlates of such value computations. This would be reflected by a

reduced sensitivity to reward and probability magnitudes in regions

previously associated with reward-related computations, such as the

mesolimbic and mesocortical dopamine pathways [16,17,18,19,

20,21], and in regions implicated in probability processing, such as

anterior and posterior cingulate cortex, anterior insula, parietal cortex

and orbitofrontal cortex [22,23,24,25,26].

Results

Behavior
Our behavioral results indicated that the expert’s advice

significantly influenced behavior. To investigate the extent to

which expert advice affected individuals’ estimated probability

weighting parameters, we employed nonlinear logistic regression

in combination with Prelec’s compound invariant form [8], a

commonly-employed specification for nonlinear probability

weighting. Group-level parameter estimates agreed well with

findings from behavioral economics (median a= 0.74; b= 1.59)

and were consistent with an inverted S-shape probability function.

We obtained behavioral evidence demonstrating that the presence

of the expert’s advice led to a significant increase in the curvature

of w(p) in the direction of the advice, such that participants

overweighted low probabilities and underweighted high probabil-

ities more after receiving the advice. This was indicated by a

significant estimate of d (d= 20.1066; 95% Confidence interval:

[20.1592 20.054], see Figure 2). A complimentary method, using

Certainty Equivalents obtained from the staircase algorithm

employed in phase 2, yielded similar results (median a= 0.8964;

b= 1.561; d= 20.0442 [20.1186 0.0302]). These findings

demonstrate that the presence of the expert’s advice led to a

significant change in the curvature of the probability weighting

function in the direction of the expert’s advice. Reaction time

results and proportion of trials during which expert advice was

followed and ignored are shown in Table 1.

fMRI Results
Main effect of message. To isolate areas activated during

the message condition, we investigated the main effect of the

message, contrasting presence and absence of the expert’s advice

(MES-NOM). As shown in Figure 3, structures showing significant

activations during the message condition included bilateral

temporoparietal junction (TPJ) and dorsomedial prefrontal

cortex (DMPFC), as well as the caudate nucleus and anterior

insula (see Table 2). Significant deactivations were reflective of

greater responses in the NOM condition and were mainly

observed in visual areas, as well as mid cingulate cortex and

posterior insula (see Table 2).

Main effect of conformity. To probe for the effects of

conformity, we contrasted blood oxygenation-level-dependent

(BOLD) responses during trials in which participants chose to

ignore versus follow the expert’s advice in the message condition

Figure 2. Probability weighting functions estimated from
decisions in the MESSAGE and NO MESSAGE conditions. This
figure shows probability weighting functions, w(p), and individual
participants’ decision weights at each probability condition estimated
using our behavioral model. A significant difference in probability
weighting functions between the NO MESSAGE (blue line) and
MESSAGE (red line) condition was obtained. The differences indicate
that participants overweighted probabilities smaller than 20% and
underweighted probabilities greater than 80% to a greater extent in the
MES compared to the NOM condition. These results indicate that the
presence of the expert’s advice, whose decision strategy is shown in the
dotted line, had a significant effect on participants’ probability
weighting functions. A median a of 0.74 was obtained in the NO
MESSAGE condition and, importantly, the a in the MESSAGE condition
was significantly different, as indicated by a significant d of 20.1066
(P,0.05).
doi:10.1371/journal.pone.0004957.g002

Table 1. Behavioral Results: Percentage of Trials in which
Advice was Followed and Ignored in each Treatment
Condition with associated Reaction Times, Average over All
Subjects.

Followed Ignored

Percentage RT Percentage RT

MES Mean 72.81 3.169 27.19 4.561

Std Error 4.07 0.244 3.45 0.883

NOM Mean 64.10 3.231 35.90 4.092

Std Error 4.07 0.226 3.45 0.468

doi:10.1371/journal.pone.0004957.t001
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only. As shown in figure 4A, significant activations were obtained

in the left anterior insula and right globus pallidus, indicating

significant BOLD responses in these regions when subjects made

decisions independently and ignored the expert’s advice (see

Table 3). A network of structures showed activations associated

with conformity with the expert and included posterior cingulate,

frontal eye fields, superior frontal gyrus, and posterior insula, all of

which were lateralized to the right hemisphere (see Figure 4B and

Table 3). Using a separate model to extract time courses in these

regions, we confirmed that activity in regions associated with

independence increased when subjects ignored the advice of the

expert (MESignored) compared to both when they followed it

(MESfollowed) and when no advice was present (NOM), while the

opposite pattern was observed in areas associated with behavioral

conformity. Figure 4C shows the time course in the left anterior

insula.

Correlations with certain payoff and weighted value of

lotteries. We probed for brain regions showing correlations

with the weighted value of the lotteries (1000*w(p)). Because the

payoff in the event of a win was always the same, these correlations

are with w(p). Separately, we searched for brain regions with

activation correlated with the magnitude of the sure win (recall

that the amount of the sure win varied by trial). The MES and

NOM conditions were investigated separately. Of note,

parametric modulators for w(p) were orthogonalized to regressors

reflective of sure win magnitude. In the MES condition, no

significant correlations with the weighted value of the lottery were

obtained, while cuneus and middle frontal gyrus showed negative

correlations (deactivations) with the value of the sure win (see

Table 4). In the NOM condition, we found significant correlations

with the sure win in a network of structures consisting of

intraparietal sulcus, posterior cingulate cortex, cuneus and

precuneus, inferior frontal gyrus and middle temporal gyrus (see

Figure 5 and Table 4). Significant correlations with the weighted

value of the lottery were obtained in left anterior insula, anterior

cingulate cortex, thalamus, precentral gyrus, and middle occipital

gyrus (see Figure 5 and Table 4).

To consider whether the profile of the relationship between

brain activation and probability differed between MES and NOM

conditions in areas showing significant correlations with value, we

obtained separate neurobiological probability response ratios

(NPRRs) for the MES and NOM conditions. Because we did

Figure 3. Activation clusters for the contrast MESSAGE – NO MESSAGE (p,0.001). Brain regions showing significant activations during the
MESSAGE (orange) included bilateral anterior insula, right caudate nucleus, bilateral inferior frontal gyrus, bilateral temporoparietal junction and
dorsomedial prefrontal cortex. Brain regions showing significant activations during the NO MESSAGE condition (blue) included lingual gyrus,
fusiformgyrus, and left posterior insula.
doi:10.1371/journal.pone.0004957.g003
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not observe any significant correlations with w(p) in the MES

condition, we expected to find relatively flat NPRRs in the MES

condition compared to the NOM condition. This would be

reflected by significant differences between NPRRs in the two

treatments, particularly for high probabilities, during which the

expert advice was maximally different from risk neutrality or

expected value maximization. Our findings are consistent with this

hypothesis. Significantly greater responses in the NOM compared

to the MES condition were obtained in the majority of areas

showing correlations with w(p), or equivalently, with weighted

value. This indicates extensive recruitment of valuation mecha-

nisms in the absence of the expert’s advice, and attenuation

(offloading) when the expert’s advice is present. Figure 6 shows

representative NPRRs in regions showing significant correlations

with probability weighting, including anterior cingulate cortex,

dorsolateral PFC, thalamus, medial occipital gyrus and anterior

insula.

Discussion

A simple financial decision-making task involving risk was

employed in the current study to investigate the behavioral and

neural mechanisms by which financial advice, provided by an

expert economist, affected decisions under risk. Behavioral results

showed a significant effect of expert advice on probability

weighting, such that probability weighting functions changed in

the direction of the expert’s advice. The behavioral effect of expert

messages was paralleled by changes in neural activation patterns.

Of note, significant correlations with the value of the lottery were

obtained in the absence of the expert’s advice (NOM), but not

during its presence (MES). These results support the hypothesis

that one effect of expert advice is to ‘‘offload’’ calculations of the

value of alternative behavioral options that underlie decision-

making from the individual’s brain.

Attenuated recruitment of valuation mechanisms
parallels behavioral results

The significant behavioral effect of expert advice on probability

weighting was paralleled by the fMRI results. At the behavioral

level, we obtained a significant effect of the expert’s advice on the

curvature of the probability weighting function, indicated by a

significant effect of the presence of the advice on a. Neurally, this

was paralleled in two ways: 1) an attenuated activation of regions

whose BOLD responses showed significant correlations with value

in the NOM condition; and 2) significantly flattened NPRRs,

reflecting an attenuated relationship between activation level and

probabilities in regions that showed correlations with probability, in

the MES condition relative to the NOM condition. Specifically, our

results revealed that, in the absence of the expert’s advice,

participants engaged two largely separate networks involved in

valuation mechanisms. These networks were composed of regions

exhibiting correlations with two types of value, namely (a) payoff of

the sure win and (b) weighted value of the lottery. These correlations

were attenuated when the expert’s advice was available.

These results implicate particular networks in evaluating the

different behavioral options and underline their importance in the

financial decision-making process. Regions that showed sensitivity

to payoff magnitudes of prospects in the current study have

previously been associated with decision-making under uncertain-

ty, such as the parietal cortex, including precuneus [27] and

intraparietal sulcus (IPS) [28,29]. The IPS is the putative human

homologue of LIP [30], an area in monkey parietal cortex that has

previously been demonstrated to process elements of expected

utility [28,31] and has been proposed to contain a map of the

expected utility of all possible actions [32]. In the current study,

activity in parietal regions was associated with the value of the

potential sure win. The posterior cingulate cortex/cuneus showed

similar activation patterns, such that activity in this region was

correlated with magnitude. These findings confirm and extend

Table 2. Brain Regions Showing Main Effect of Message.

L/R Structure BA Volume RL AP IS Max t

MESSAGE.NO MESSAGE

R Superior Frontal Gyrus / DMPFC 8 101 3.5 38.4 51.2 6.654

L SupramarginalGyrus / TPJ 40 37 251.7 257 31.2 4.564

R SupramarginalGyrus / TPJ 40 31 50.9 250.2 31.6 5.43

L Insula 47 29 229.4 18.2 211.9 6.894

R Insula 47 24 35.7 25 211.3 4.8

R Inferior Frontal Gyrus 47 8 55.5 25.5 7.5 4.028

R Caudate 6 7.9 9.5 11.4 4.456

R Caudate 5 9 8.4 1.2 4.552

L Inferior Frontal Gyrus 47 5 251.6 25.8 9 4.037

NO MESSAGE.MESSAGE

R Lingual Gyrus 18 263 1.2 281.6 23.2 210.558

L Cuneus 18 9 29 266 4 24.266

R Mid Cingulate Cortex 32 9 10.6 6.7 36.3 24.952

L FusiformGyrus 19 7 219.7 269.9 29.4 24.428

R Posterior Cingulate Cortex 30 7 12.4 250.9 10.3 24.31

R Middle Temporal Gyrus 22 6 58.5 235.5 23.5 4.421

L Posterior Insula 22 5 241.4 213.8 21.8 24.402

doi:10.1371/journal.pone.0004957.t002
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previous results implicating this area in decision-making under

uncertainty [22,33,34,35]. Specifically, responses in this area have

been shown to scale with reward magnitude and predictability of

reward [36] and PCC is an integrating node of the brain’s default

network involved in processing self-referential states (e.g. [37,38])

and part of a network implicated in encoding subjective values of

rewards [33,34]. Importantly, the effect of the expert’s advice was

to attenuate these responses, which suggests that the advice, in

part, ‘‘offloaded’’ the processing of value.

The neurobiological equivalent to probability weighting
is influenced by expert advice

We also confirm the presence of nonlinear weighting of

probability, both at the behavioral, as well as the neural level in

a network of areas sensitive to probability. We show that the

degree of probability weighting can be influenced by the presence

of advice from a financial expert, both at the behavioral (Figure 1)

and, in parallel fashion, at the neural level (Figure 6). Neurally, the

Figure 4. Neural correlates of conformity were revealed in the message condition by contrasting participants’ choices to follow vs.
ignore the advice of the expert (MESfol-MESign). A. Brain regions responding when participants ignored the expert’s advice included left
anterior insula and right globus pallidus. B. Brain regions showing significant activation when participants conformed to the expert’s advice included
posterior insula, frontal eye fields and posterior cingulate, as well as two activation clusters in superior frontal gyrus (not shown here). C. The time
course in the anterior insula shows a significant increase in activation when participants decided to ignore the expert’s advice (green line) compared
to when they decided to follow it (red line), or during the absence of the expert’s advice in the NOM condition (blue line).
doi:10.1371/journal.pone.0004957.g004

Table 3. Brain Regions Showing Effect of Ignoring vs.
Following the Expert’s Advice in the Message Condition.

L/R Structure BA Volume RL AP IS Max t

FOLLOWED.IGNORED

R Posterior Insula 40 15 49.8 231.5 28.4 24.889

R PrecentralGyrus / FEF 4 18 49.2 27.4 48.7 24.9174

R Posterior Insula 5 15 17.6 235.1 50.3 25.3276

R Superior Frontal Gyrus 6 5 8.4 27.8 60 24.3113

R Superior Frontal Gyrus 6 6 14.5 22 69.5 24.0575

IGNORED.FOLLOWED

L Anterior Insula 47 21 230.3 20.5 29 4.9924

R Globus Pallidus 6 15.5 2 25.1 4.9392

doi:10.1371/journal.pone.0004957.t003
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effect of the expert’s advice was investigated using nonlinear

probability weighting functions (NPRR, [26]). Specifically, we

found that regions showing significant correlations with probability

exhibited flattened NPRRs in the MES condition relative to the

NOM condition. This effect was reflected in significantly lower

NPRRs in the MES condition for probabilities above 80%.

In previous work, we demonstrated the presence of nonlinear

probability weighting functions in a network of areas when

probabilistic information about an impending electrical shock was

provided [26]. Here, we extend our previous results by

demonstrating (a) the presence of nonlinear probability weighting

in the context of financial decision-making (that is, in which money

is the reward medium) and, importantly, (b) that neurobiological

probability response ratios are significantly biased by our

experimental manipulation – advice from a ‘‘satisficing’’ expert

economist. In the current study, areas showing significant

correlations with nonlinear probability weighting included the

anterior insula, anterior cingulate cortex, dorsolateral PFC,

thalamus and medial occipital gyrus. Regions within this network

also showed significantly flattened NPRRs in the presence of

expert advice, especially at higher probabilities. These results

confirm findings from previous research demonstrating nonlinear

probability weighting in anterior cingulate cortex [23,26].

Similarly, the anterior insula has repeatedly been implicated in

risky decision-making and is thought to encode the negatively

valenced affective aspects involved in risk [39,40,41,42].

Offloading to areas associated with mentalizing in the
MESSAGE condition

Recruitment of valuation processes reflective of reward

magnitude and probability weighting was greatly attenuated in

the MES condition. Together with our behavioral results, these

findings indicate that the presence of the expert’s advice

significantly altered the decision-making process. During the

presence of the expert’s advice, a network of brain regions was

active that included areas associated with mentalizing others’

intentions, such as TPJ and DMPFC (e.g. [10,39,43,44]. Further

regions showing increased activation during the presence of advice

included the caudate nucleus, a region involved in social reward

learning [45,46], the anterior insula, a region involved in risk and

negative emotional arousal ([47,48]), and lateral inferior frontal

gyrus (BA47), a region involved in inhibitory control and task

switching ([49,50]). Except for the anterior insula, these regions

did not show overlap with areas involved in making financial

choices. This activation pattern is consistent with the hypothesis

that differential evaluatory processes were engaged when advice

was provided by the expert compared to when participants made

choices independent of the expert’s advice.

Taken together, the activation pattern obtained in the presence

of the expert’s advice indicates an attenuated recruitment of

valuation mechanisms that was accompanied by significant

activations in regions associated with TOM reasoning. The TPJ,

especially in the right hemisphere, has previously been associated

with judgments of true and false beliefs that other people may hold

[10,51], as well as mental state attribution [10,14] and belief

attribution in the context of moral digressions [13]. The medial

prefrontal cortex, on the other hand, is activated in a number of

scenarios involving mentalizing [43,52,53,54,55,56,57]; for a

review see [11]), with a region of dorsomedial prefrontal cortex

being engaged when mentalizing about a dissimilar other [44].

These results parallel findings from the current study. Activation

patterns in TPJ and DMPFC show increased BOLD responses in

Table 4. Brain Regions Showing Correlations with Weighted Value of Lotteries and Magnitude of Sure Win during the
NOMESSAGE (NOM) and MESSAGE (MES) conditions.

L/R Structure BA Volume RL AP IS Max t NPRR99 NOM.MES

NOMESSAGE Lottery Value

L Anterior Insula 47 15 231.4 20.8 22.1 5.058 No

L Medial Frontal Gyrus 8 14 26.2 27.7 42.9 4.7863 Yes

L Thalamus 9 20.7 213 0.6 4.3643 Yes

L Anterior Cingulate Cortex 9 7 237.7 23.6 41.2 4.6137 Yes

R Middle Occipital Gyrus 18 6 28.1 289.5 23.5 4.7843 Yes

NOMESSAGE Sure Win Magnitude

R IntraparietalSulcus 7 44 31.3 248.5 44.2 5.8676 Yes

L Cuneus 18 35 223.9 295.4 28.3 5.2682 Yes

R Middle Occipital Gyrus 18 31 32 292 21.1 4.9522 Yes

R Precuneus 19 26 29.7 264.8 40.5 4.4483 Yes

L Cuneus 30 21 211.3 273 6.4 4.4809 Yes

R Posterior Cingulate Cortex 30 13 19.6 268.8 4.4 4.3002 Yes

R Middle Temporal Gyrus 37 5 59.5 249.3 212 4.998 Yes

L Middle Occipital Gyrus 19 5 227 260.6 1.1 4.9919 Yes

R Posterior Cingulate Cortex 30 5 28.8 265.4 7.2 4.2667 Yes

R Inferior Frontal Gyrus 9 5 40.8 7.2 30 3.9422 No

L Caudate 4 29.0 7.5 26.0 4.2107 No

MESSAGE Sure Win Magnitude

L Cuneus 18 7 227 220.1 52.7 24.204 Yes

L Middle Frontal Gyrus 4 6 258.4 235.1 25.5 24.5856 Yes

doi:10.1371/journal.pone.0004957.t004
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the presence of the expert’s advice in a manner consistent with

their involvement in belief attribution (TPJ) and reasoning about

dissimilar others (DMPFC), which is a fitting description of the

expert economist in relation to our student subject pool.

Activations in TOM areas during the presence of the expert’s

advice were accompanied by activations in regions associated with

valuation in the context of decision-making tasks, including

anterior insula and caudate nucleus. Previous research has

implicated the caudate in feedback processes that guide future

actions [58,59]. Of particular importance to the current results are

findings demonstrating that responses in the caudate are also

involved in learning about the trustworthiness of trading partners

in the context of economic games [45,46]. Such studies have

shown that responses in the caudate decreased as participants

learned to make predictions about actions from partners in a

manner consistent with a social reward-prediction error signal in

this region [46]. Furthermore, responses in the caudate have been

shown to be modulated by moral character descriptions when

participants made risky financial choices about whether to trust

trading partners in the context of a trust game [45]. In particular,

Figure 5. Valuation networks. Brain regions sensitive to weighted value of either the lottery (red probability weighting), or value of the sure win
(green, magnitude) (P,0.001). Magnitude sensitive regions were determined using a linear contrast of sure win magnitudes offered to individual
subjects. Regions sensitive to weighted lottery value were identified using a linear contrast of probability weights estimated for each individual
subject, using our behavioral decision-making model. The networks for probability weighting and sure win magnitude were largely separate, except
for overlap in occipital cortex, with parietal regions (intraparietal sulcus, precuneus), occipital cortex, as well as striatum being responsive to
magnitude. Regions associated with nonlinear probability weighting included the anterior insula, dorsolateral PFC, anterior cingulate cortex and
occipital cortex.
doi:10.1371/journal.pone.0004957.g005
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the caudate responded to financial feedback about risky choices to

trust a trading partner when little prior information about the

partner’s character was provided (neutral description), but not so

when descriptions were informative about the trading partner’s

actions (good or bad descriptions). In view of the above findings,

results from the current study are consistent with the hypothesis

that the caudate nucleus is involved in social reward learning. It is

possible that the caudate activations observed in the presence of

the expert’s advice in the current study may reflect learning signals

about the trustworthiness of our expert.

Nonconformity with the expert
To investigate the involvement of areas in conformity with, or

independence of the expert, we probed for brain regions showing

differential responses when following vs. ignoring the expert’s

advice. Regions showing increased responses when ignoring the

expert included the anterior insula and globus pallidus, implicating

these regions in nonconforming decisions that override the expert’s

advice. Interestingly, responses of a subset of globus pallidus

neurons have recently been associated with negative reward-

related signals [60,61], which is consistent with the notion that

activity in this region may reflect a negative evaluation of the

expert’s advice.

Little is known about the neurobiological basis of conformity. In

a previous study, participants made binary perceptual decisions

about rotated 3D objects in the presence of answers provided by

either peers or a computer [15]. Conformity with the peer group

was associated with increased activations in occipital and parietal

regions, while independence of the peer group was associated with

activations in right amygdala, an area associated with negative

emotional states ([62]), and the head of the right caudate, activity

of which is associated with stimulus salience ([63,64,65]). Overall,

the findings indicate social modulation of perceptual regions

during conformity and the presence of emotional salience and

negative emotional arousal during independence.

These findings are corroborated by results from the current

study demonstrating increased responses in the anterior insula

when participants ignored the expert. The anterior insula has

repeatedly been implicated in risky decision-making and is thought

to encode the negatively valenced affective aspects involved in risk

[39,40,41,42,43]. Here we demonstrate that activity in this area

correlates with nonlinear probability weighting, as shown

previously [26]. Additionally, our results implicate this area in

evaluating the advice provided by the expert, as indicated by

increased activity in this area during the presence of the expert’s

advice and when participant’s decided to ignore the expert’s

message (Figure 4C). Thus, our findings suggest that the anterior

insula is an integrative region that assesses the risk involved in

choosing the lottery against the advice provided by the expert.

In summary, our results demonstrate that financial advice from

an expert economist, provided during decision-making under

conditions of uncertainty, had a significant impact on both

behavior and brain responses. Behavioral results showed a

significant effect of expert advice, such that probability weighting

functions changed in the direction of the expert’s advice. The

behavioral effect of expert messages was paralleled by neural

activation patterns. Specifically, (1) significant correlations with the

value of choice alternatives were obtained only in the absence of

the expert’s advice, but not during its presence. This indicates an

attenuation in the engagement of valuation processes in the

presence of expert advice; (2) during the message condition, areas

associated with mentalizing, such as DMPFC and bilateral TPJ

were recruited, and finally, (3) ROI analyses of regions associated

with probability indicated a significant ‘‘flattening’’ of neurobio-

logical probability response ratios (NPRR) in the message

condition compared to the no-message condition. This lends

further support to the hypothesis that in the presence of advice

from an expert, recruitment of valuation mechanisms was

attenuated. Taken together, these results provide significant

support for the hypothesis that one effect of expert advice is to

‘‘offload’’ the calculation of expected utility from the individual’s

brain.

Methods

Subjects
24 healthy, right-handed participants (15 females) participated

in the current study, which was approved by the Emory University

Institutional Review Board. The average age was 23 with a

standard deviation of 5.3 years. The majority of participants were

undergraduate students (17), 6 participants had graduate-level

education, 1 subject chose not to provide educational information.

All participants gave written informed consent and reported good

health with no history of psychiatric disorders.

Certainty Equivalent (CE) task
Each session of the experiment consisted of two phases. The first

phase, was conducted outside the scanner and subjects made

choices between a sure win and lotteries providing ex-ante

probabilities of winning a comparatively higher payoff, as shown

in Figure 1. The second phase proceeded in an identical fashion,

except that individuals underwent scanning and advice from an

expert economist was displayed on half the trials. The lotteries

were specified so that the probability of winning the lottery varied

across conditions (0.01, 0.1, 0.2, 0.37, 0.8, 0.9, 0.99). While the

amount the individual received by winning the lottery was

constant across trials (1000 units of ‘‘Yen,’’ the experimental

currency), the value of the sure win was adjusted according to

decisions made by the subject, as outlined in detail below.

In order to control for wealth effects, participants received a

chance to win cash-rewards at the end of each session by randomly

selecting one of the trials via a throw of three 10-sided dice. The

decision made on the selected trial determined payment as follows:

if the sure win was chosen on the selected trial, the respective

amount was paid to the subject; if the lottery was chosen, a

‘‘computerized coin was tossed’’ giving subjects a chance to win

1000 laboratory Yen at the probability indicated in the lottery. An

exchange rate of 1000 laboratory Yen = 16 USD was established

at the beginning of the experiment, and subjects were informed of

this rate. We used 1000 YEN as the lottery amount to facilitate the

computation of the expected value of the lottery (should the

subject wish to make such a calculation).

We optimized order and timing of our experimental design for

adequate estimation of message- and probability-related responses

Figure 6. Neurobiological probability response ratios (NPRR) in representative regions showing correlations with weighted value
of lottery (Table 4). The mean ratio for each subject was computed at each probability relative to the NOM baseline, and the median across
subjects is plotted with error bars indicating the 95% confidence interval for the median. The NPRR curves are plotted with reference to the diagonal,
which indicates linear probability weighting. Significant differences between NOM and MES function, denoted with ‘‘*’’, were obtained consistently in
the 99% probability condition (see Table 4), the point at which the effect of the expert’s advice was maximal.
doi:10.1371/journal.pone.0004957.g006
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[66], by randomly generating 5000 sequences of trials and

choosing the best sequence based on a statistical efficiency

criterion. Specifically, each experimental sequence included 224

trials in 7 Probability conditions (0.01, 0.1, 0.2, 0.37, 0.8, 0.9,

0.99), and occurring in the presence and absence of the expert’s

advice.

As shown in Figure 1, each trial included a 3.5-second decision-

making period (based on the mean reaction time in pilot

experiments), followed by a 1-second feedback period providing

confirmatory information about which option was selected by the

participant. Finally, an intertrial interval (ITI) that was drawn

from a randomly generated exponential function with a mean of

5000 ms (range: 3000–10000 ms) was presented. At each iteration,

trial order and ITI length were pseudo-randomized (no probability

condition was repeated more than twice in a row, mean ITI length

for all conditions was equalized) for all trials in a given

experimental sequence and a design matrix was generated using

AFNI’s 3dDeconvolve script, assuming a TR of 2.5 seconds. The

sequence with the smallest mean standard deviation for regressors

of interest was chosen as the optimal sequence for use during

scanning.

Phase 1: Certainty Equivalent estimation using PEST
It has previously been argued that subjects can exhibit

inconsistent preference behaviors, show strong framing effects,

and distort reward magnitude or reward probability [67]. We

therefore employed an iterative procedure during a behavioral

pre-scanning session to obtain the best possible estimate of each

participant’s certainty equivalent (CE), or point of indifference

between a lottery and a sure win. Having an estimate of an

individual’s CEs allowed us to optimize the range of offers

presented during the scanning session. Specifically, to estimate

each participant’s CE, a modified version of the parameter

estimation by sequential testing (PEST) procedure was employed

[68,69]. This staircase algorithm started with a random offer

depending on probability condition, such that starting offers

between 0 and 500 YEN were provided in low probability

conditions (0.1–0.37) , while starting offers between 500 and 1000

YEN were provided in high probability conditions (0.8–0.99). In

order to create choice switches between sure wins and lotteries,

amounts for sure wins were adjusted as follows: whenever the

subject chose the sure win, the amount offered on the next trial

was decreased by step-size, e; whenever the subject chose the

lottery, the amount of the sure win offered on the next trial was

increased by e. The magnitude of e was determined by the

following 4 rules adapted from [68,69]: (1) the initial step-size was

set to 1/5 of the difference between the maximum and minimum

possible payoffs (e= 200 YEN); (2) at each choice switch e was

halved; (3) e was doubled after three successive choices of the same

item; (4) values were bounded at the maximum (1000 YEN) and

the minimum payoffs (0 YEN). This was done within each

probability condition, which were presented in random order, and

separate counters kept track of choices within each probability

condition. The staircase algorithm terminated when the threshold

step-size for a given probability condition was reached. This

threshold was set to 25 YEN for all conditions, except for 0.01,

0.37 and 0.99, for which the threshold was set to 12.5 YEN. Phase

1 was conducted outside the scanner.

There are both advantages and limitations of using the PEST

procedure. One advantage is that we can generate CEs without

having to opt for an auction such as the Becker-deGroot-Marschak

(BDM) procedure, which would be difficult to implement in the

scanner. On the other hand, one disadvantage is that it is possible,

at least in principle, for the procedure to be manipulated by highly

sophisticated subjects. However, we did not observe any evidence

indicating that participants employed strategies to manipulate the

staircase procedure in order to increase their chances of winning

more money. Such a strategy would have led to a substantial

overweighting of small probabilities relative to typical levels, which

we did not find. Furthermore, during debriefing at the end of the

study, participants indicated that they had not identified any way

to engage in strategic behavior.

Phase 2: Scanning Session
Inside the scanner, subjects made choices between lotteries and

sure wins in a similar fashion as in the behavioral pre-scanning

session, except that an expert economist provided his suggestions

during half of the trials. In order to make the economist

trustworthy, participants were informed of the economist’s

credentials and achievements, as well as his preferred decision

strategy, in detailed instructions, which read as follows: ‘‘An expert

Economist (Professor Charles Noussair of the Department of

Economics at Emory University) is going to tell you his preferred

decisions on half the trials. Professor Charles Noussair, Ph.D.,

earned Bachelor’s degrees in Economics and Psychology from the

University of Pennsylvania, and Master’s and Doctorate Degrees

from the California Institute of Technology. He has taught at

Purdue and Emory Universities, and been a visiting professor in

Australia, Japan, France, and the Netherlands. He has consulted

for NASA, the Federal Reserve and the French ministry of

Agriculture and has published numerous articles in high-impact

peer-reviewed scientific journals.’’ None of the participants had

been acquainted with Charles Noussair previously.

The expert’s suggestions followed approximately a satisficing

rule, which were, in part, consistent with those of a decision-maker

trying to maximize his probability of winning at least 200YEN.

Specifically, in trials in which the sure win was below 200YEN, the

expert’s advice was the option that maximized expected value. In

trials in which the sure win was greater or equal to 200YEN, the

expert advised acceptance of the sure win. Suggestions were

displayed at the top of the screen via placing the word ‘‘ACCEPT’’

above the recommended option, and ‘‘REJECT’’ above the option

not recommended (see Figure 1). In the other half of the trials, the

word ‘‘UNAVAILABLE’’ was displayed above both options, to

indicate that the economist’s recommendations were not provided

on that trial. Participants were instructed to pay attention to and

consider the expert’s recommendations, but to make choices based

on which option they considered most attractive.

During phase 2, the sure win magnitudes were based on CEs

estimated during phase 1, and differed for each subject.

Specifically, sure win magnitudes were selected randomly from

the interval [CE2(0.4 * CE), CE+(0.4 * (1000-CE))], except for

eight of the subjects, for which sure win magnitudes were provided

by CE60.2 * CE and CE60.4 * CE (the discretized range was

changed to a random sampling of the interval to provide better

coverage of the offer space).

To allow for potential changes in CE which might occur if

participants followed the expert advice during the scanning

session, an attenuated version of the staircase algorithm was

employed during phase 2 as well. This was done to ensure an

adequate number of offers both above and below the subject’s CE,

even if the CE changed during the course of the experiment. This

staircase algorithm tracked extreme behaviors, such that CEs in a

given probability condition were adjusted when subjects deviated

from expected behavior. Specifically, CEs were decreased by J of

the difference between CE and sure win magnitude in a given

probability condition when participants accepted a sure win that

was lower than CE, while CEs were increased by J of the
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difference between CE and sure win magnitude, when participants

chose to reject a sure win that was larger than the CE of the

current probability condition. This adaptive algorithm tracked

changes in probability weighting during the scanning session,

which (1) ensured that sure win magnitudes were based on current

decision-making parameters by accounting for potential changes

in probability weighting that might occur as a function of context

change (such as scanner environment, presence of expert,

experienced outcome after completion of PEST procedure) and

(2) provided a method for estimating the effects of expert messages

on probability weighting that is independent of our behavioral

decision making model outlined below.

Decision Making Model
Empirical evidence suggests that decisions under risk are

typically consistent with the transformation of objective probabil-

ity, p, by a function, w(p), which has an inverted S-shape [6,7,8,9],

with w(p).p for p,p*, w(p),p for p.p*, and p*<0.37. Probability

weighting has been integrated as a key factor in several theories of

choice under risk, including prospect and cumulative prospect

theory [5,70], as well as rank dependent utility theory [71].

We employed nonlinear logistic regression to estimate each

participant’s probability weighting and utility functions from their

binary decisions (lottery or sure-win) using a modified version of

Prelec’s compound invariant form [8] with additional parameters

estimating the effect of the message on probability weighting. In

each trial, the participant had a choice between a sure win (SW)

and a lottery. According to Prospect Theory, the value of the

lottery is given by giw(pi)U(xi). Let W, be the difference in utility

between the lottery and the sure win in each trial. We take this

difference as the main determinant of our behavioral decision-

making model.:

W~w Pð Þ| 1000c{SW c ð1Þ

where, on a given trial, P is the probability of winning the lottery,

SW reflects the value of the sure win and c reflects the curvature of

the utility function. w(P) was modeled using a modified version of

Prelec’s compound invariant form, such that

w Pð Þ~exp {b {log Pð Þaz d�mð Þz l�rð Þ
�n o

ð2Þ

where m is a dummy variable indicating the presence (1) or

absence (0) of an expert message and d captures the effect of

message on a, r is run number and l is a learning parameter. We

will refer to w(P)61000c as the Weighted Walue of the lottery to an

individual. The learning parameter was included to allow for the

possibility that the expert advice affected decision-making across

all trials, including non-message trials. The probability of choosing

the lottery (Pl) was estimated using a logistic regression

specification:

Pl~exp Wf g= 1zexp Wf gð Þ ð3Þ

where Pl is the probability of choosing the lottery. Parameters were

estimated for each subject using the least squares curve fit function

in Matlab. Starting parameters were obtained for a, b, d, l, and c
by iterating through a matrix of starting parameters varying

between [21 1.5] and choosing those starting parameters that

minimized residuals for each subject. Finally, decision weights,

w(P), were obtained for each subject separately. Decision weights

were (a) used as parametric modulators in neuroimaging analyses

and (b) entered into a random effects behavioral group-level model

that used nonlinear regression to obtain decision weights as a

function of the presence of the expert’s advice using Prelec’s

compound invariant form with additional parameters for each

participant’s a and d, where d captures the influence of the

message on a:

w Pð Þ~exp {b {log Pð Þaz d�mð Þ
�n o

ð4Þ

Functional Magnetic Resonance Imaging. Neuroimaging

data were collected using a 3 Tesla Siemens Magnetron Trio

whole body scanner (Siemens Medical Systems, Erlangen,

Germany). A three dimensional, high-resolution anatomical data

set was acquired using Siemens’ magnetization prepared rapid

acquisition gradient echo (MPRAGE) sequence (TR of 2300 ms,

TE of 3.93 ms, TI of 1100 ms, 1 mm isotropic voxels and a

256 mm FOV). Functional data consisted of thirty-five axial slices

that were sampled with a thickness of 3 mm and encompassing a

field of view of 192 mm with an inplane resolution of 64664 (T2*

weighted, TR = 2500 ms, TE = 31 ms). The task was presented

with Presentation software (Neurobehavioral Systems, Albany,

CA) and visual stimuli were projected onto a frosted glass screen,

which the subject viewed through an angled mirror mounted to

the head coil. Inhomogeneities in the magnetic field introduced by

the participant were minimized with a standard two-dimensional

head shimming protocol before each run and the anatomical data

acquisition. In our dataset, each participant completed 4 runs with

56 trials, whose length depended on participants’ decision time.

fMRI Data Analysis
fMRI Preprocessing. Initial preprocessing of the data was

conducted using Analysis of Functional Neuroimages (AFNI,

http://afni.nimh.nih.gov/afni). Data underwent slice-time

acquisition correction using Fourier interpolation. The functional

data were then spatially aligned to the volume acquired closest to

each subject’s anatomical image. After motion correction,

anatomical and mean functional datasets were manually co-

registered. Individual gray matter tissue probability maps (TPMs)

were computed from anatomical datasets and spatially warped to

standard MNI space using the VBM5 toolbox (http://dbm.neuro.

uni-jena.de/vbm) running in SPM5 (http://fil.ion.ucl.ac.uk/spm/

software/spm5). Normalization to standard MNI space was

conducted in SPM5 by applying the transformation matrix

obtained from normalizing the anatomical data set to the

functional data using quintic interpolation. Functional data then

underwent spatial smoothing using an isotropic Gaussian kernel

(full width at half maximum (FWHM) = 6 mm). Finally, each

voxel’s signal intensity was scaled to a mean of 100.

fRMI Analysis. FMRI data were analyzed using the General

Linear Model and a standard two-stage mixed effects analysis.

Trials were classified according to type of decision made by

participants. Specifically, responses were sorted according to

whether participants followed or ignored the expert’s advice in the

message condition (MES), while in the no message condition

(NOM) responses were sorted according to whether participants’

would have followed or ignored the expert’s advice had it been

shown. The latter conditions were included in the analyses in

order to control for potential learning effects across message

conditions. First-level multiple regression models consisted of 4

regressors of interest, modeling the presence/absence of expert

choice and type of decision made by the subject. Two additional

regressors were included in each condition in the form of
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parametric modulators predictive of (1) amount of sure win

magnitude (SW) offered on each trial, and (2) decision weights,

w(P), reflective of subjective distortions of actual probabilities as

estimated by the behavioral decision-making model outlined

above. Of note, parametric modulators were tailored to each

subject’s level of risk attitude. Because we were interested mainly

in the effects of expert messages on probability weighting, we

orthogonalized the regressors reflecting parametric modulation by

w(P) relative to regressors reflecting parametric modulation by SW

within each condition. This procedure generated new regressors

within each condition whose variance in w(P) is not explained by

SW. All first-level statistical models included additional regressors

of no interest for each run to model slow signal drifts (constant and

polynomial terms), to account for residual head motion (roll, pitch,

yaw, and displacement in superior, left and posterior directions)

and one regressor to model the 1-second feedback period

presented after each decision.

To localize regions involved in processing the presence of the

expert (MES main effect), a random effects model was imple-

mented at the second level as separate paired two-sample t-tests

contrasting the beta images corresponding to 1) presence and the

absence of the MES and 2) ignoring the expert and following the

expert in the MES condition only. Finally, to probe for brain

regions associated with valuation processes (probability weighting

and magnitude of sure win), correlation contrasts were performed

with separate one-sample t-tests on parametric modulators in MES

and NOM conditions. All t-maps were thresholded at an

uncorrected p-value of 0.001 with a cluster size threshold of

k.5, except for striatal areas for which a cluster size threshold of

k.4 was employed.
ROI analysis of regions showing conformity and

independence with the expert. To extract the temporal

dynamics within regions showing a significant response when

subjects followed or ignored the expert’s advice in the MES

condition, a different first-level model was fitted to each

participant’s fMRI data. In this model, the hemodynamic

response during MES and CHOICE was modeled with a basis

set of seven cubic spline functions spaced one TR (2.5 s) apart and

spanning the interval from 0 to 15 seconds post trial onset. In

order to create reconstructed event-related responses on a 1 s

temporal grid, the set of fitted spline functions was resampled at a

temporal resolution of 1 second and averaged within each ROI as

a function of the following condition of interest: MESfollowed,

MESignored and NOM.
Neurobiological probability response ratio (NPRR). The

above whole-brain analysis probed for regions encoding non-linear

probability weighting and sure win magnitude. To illustrate fMRI

responses within structures associated with valuation, and,

importantly, differences in probability weighting as a function of

the expert’s advice, we analyzed the ROI activations using a

previously developed method of transforming neural activations to

a neural analog of the probability weighting function. Specifically,

we were interested in how the NPRR, the relationship between

neural activation and probability of a given outcome, was affected

by the presence of the expert’s advice. This model was only used in

areas already identified by the aforementioned contrasts. We

converted mean activations reflecting signal change to

neurobiological probability response ratios (NPRR) following

methods described in detail in Berns et al. (2008). According to

prospect tgheory, the probability weighting function, w(p), is a

monotonic function that is bounded by [0,1] in both domain and

range. The function transforms an objective probability, p, into a

weight based on subjective factors when evaluating a lottery. An

equivalent function based on fMRI responses can be obtained via

transforming neural responses to the presentation of a probability,

y(p). We assume that a null outcome, such as a payoff of zero,

occurs with probability 12p. The NPRR function is given by

NPRR(p) = y(p)/y(1), where y(1) is the fMRI response to a lottery

with p = 1. Because fMRI responses do not represent absolute

physical quantities, a baseline response was defined as the BOLD

response during the NOM condition at p = 0.37. This is

approximately the point at which the probability weighting

function crosses the identity function, as demonstrated by

various behavioral studies [5,6,70,72,73]. This choice of baseline

controls for various psychological and physiological processes

associated with low-level processing of the stimuli [26]. The value

of y(1), at outcomes which are certain, was approximated by the

mean beta value of the BOLD response for those trials in the

NOM condition in which the probability of winning the lottery

was 0.99. The restrictions that yNOM(.99) = 1 and yNOM (.37) = .37

yield the following NPRR:

NPRR pð Þ~0:63�
y pð Þ{yNOM 37

yNOM 99{yNOM 37

z0:37 ð5Þ

NPRRs, were estimated separately for mean BOLD responses

during both the message and no message conditions. As in [26],

the median of the means were employed to estimate central

tendency and a 95% confidence interval was obtained to estimate

statistical significance using the following equation: [(N+1)/

2]61.96*(!N)/2 [74].
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