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ABSTRACT: Modern economic theories of value derive from expected util-
ity theory. Behavioral evidence points strongly toward departures from
linear value weighting, which has given rise to alternative formulations
that include prospect theory and rank-dependent utility theory. Many of
the nonlinear forms for value assumed by these theories can be derived
from the assumption that value is signaled by neurotransmitters in the
brain, which obey simple laws of molecular movement. From the laws of
mass action and receptor occupancy, we show how behaviorally observed
forms of nonlinear value functions can arise.
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INTRODUCTION

The last 5 years have seen a vast increase in the number of neuroimaging
papers that attempt to identify the neural code for “value,” whether described
as a “reward,” a “reinforcer,” or by the economic term, “utility.” The con-
cept of value that is investigated is a “score” that is relevant to behavior. An
extreme view of the relationship between value and behavior is that of classi-
cal economics, which assumes that people make optimal decisions. Optimal
decisions are those decisions that maximize the individual’s value, or utility,
they hope to obtain. This model provides a normative description of how per-
fectly rational agents behave. A behavioral economist might add assumptions
of errors in actions, decision biases, or slow and incomplete learning in con-
structing descriptive models of behavior. A psychologist, on the other hand,
might view decision making as the interaction between cognitive and affective
forces. It is into this fray that neuroimagers have stepped. The hope is that mea-
surement of brain activity will resolve these long-standing debates about the

Address for correspondence: Gregory S. Berns, Department of Psychiatry and Behavorial Sciences,
Emory University School of Medicine, 101 Woodruff Circle, Suite 4000, Atlanta, GA 30322. Voice:
+404-727-2556; fax: +404-727-3233.

gberns@emory.edu

Ann. N.Y. Acad. Sci. 1104: 301–309 (2007). C© 2007 New York Academy of Sciences.
doi: 10.1196/annals.1390.013

301



302 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

varied motivations that people have for the decisions they make. But, like Al-
ice’s looking-glass, the answers seem to depend on who is asking the question.

In this article, we propose a parsimonious structure to consider the biophys-
ical constraints of how neuronal systems respond to varying levels of scalar
quantities—interpreted as value or, alternatively, as the determinants of value.
As far as we know, neurons act as detectors of differences. That is, they fire
when a change of membrane state occurs. They adapt to levels of stimulation,
making them poor signalers of absolute levels of anything, be it intensity of
visual stimulation, caloric intake, or value. If we consider value as a quantity,
like photic stimulation, then it is possible to extrapolate, from the behavior of
analogous neural systems, how the brain perceives value.

We begin with the assumption that cognitive processing of value is influ-
enced by the biophysical properties that govern neurotransmitter and receptor
binding in the brain. Although decidedly reductionist, this assumption requires
only that the brain is the physical organ that controls behavior and that the brain
operates according to well-known laws of physics and chemistry. While the
biophysical properties of the brain may not capture all the aspects of psy-
chological processes, the physical structure of the brain does place specific
constraints on the implementation of psychological processes.

Our derivation suggests a hypothesis that measures of brain activation are
biological transformations of stimuli, which can be interpreted as biological
proxies for utility functions. With minimal assumptions, one can derive prop-
erties of a value function that capture many aspects of those postulated in
theories of decision making, like expected utility theory1 and prospect the-
ory.2 For instance, our model implies a diminishing marginal sensitivity to
value and probability, which is consistent with the available evidence from
economic experiments.

RECEPTOR OCCUPANCY THEORY

According to receptor occupancy theory, a biological response results from
the interaction between a neurotransmitter and a cellular receptor.3 The theory
has its basis in the law of mass action. In chemical reaction notation, we
consider a drug (or neurotransmitter), A, which binds to a receptor, R, and
forms a drug–receptor complex, AR, which acts as a stimulus to the cell. The
result is a cellular response:

A + R ↔ AR → Stimulus → Response

The magnitude of this response can be described by

Response =
[

ε × [R] × [A]

Kd + [A]

]�

(1)
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where [A] is the concentration of the neurotransmitter, [R] is the concentration
of the receptor, Kd is the dissociation constant, ε is the efficacy, and � is
an exponent that describes the stimulus-response relationship of the cell. If
we assume that [A] is directly, and linearly, related to the magnitude of an
exogenous entity, z, such as the amount of money, pain, or consumption that
an individual is presented with or receives, and that the effective maximal
receptor concentration, Rmax, equals ε×[R], then

Response =
[

Rmaxz

Kd + z

]�

(2)

Thus, we make a critical distinction between the quantity, z, and the mea-
surable response to z. By the same logic, z can represent any psychological or
economic quantity, which is represented by a scalar quantity. There are two
ways that utility can be interpreted in the context of Equation 2. The first is to
interpret utility as z, the exogenous entity, and treat it as if it were a physical
quantity that is transformed into a cellular response. The second is to interpret
Equation 2 as describing a transformation of a physical quantity into utility.
To the degree that mental constructs of value become physically instantiated
in the brain, Equation 2 describes how this transformation might occur (with
certain assumptions). Under either interpretation, the utility may be that of
a certain event or the value assigned to a lottery, in which case it may take
the expected utility or another functional form. The current neuroeconomic
literature does not address the issue of which interpretation might be more
appropriate. Although several studies have reported biological correlates of
utility, it is not yet clear whether these measurements correspond to utility,4–6

a version of instantaneous pleasure or anticipated pleasure (analagous to z in
Eq. 2), or whether these measurements are, in fact, a response to a psycho-
logical construct of utility. For purposes of this article, we conjecture only
that biological measurements are constrained by Equation 2, but it is worth
considering the two possibilities separately.

It is possible that the notion of value (or utility) is a mentally constructed
quantity without physical instantiation in a single brain location. While still
contained in the brain, a distributed representation might limit the practical ap-
plication of Equation 2, which is fundamentally a description of the movement
of molecules at a single synapse. A variety of studies, however, have suggested
that the nucleus accumbens is a location that contains a centralized measure
of utility. Although the proposed explanations differ from purely hedonic (ex-
periential) utility, to expected utility, to temporal difference prediction (i.e., a
derivative of expected utility), it is reasonable to ask how Equation 2 would
transform these parameters into a physical response. Once transformed, this
signal could be propagated to other brain regions that require access to value
information.
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FIGURE 1. The neurotransmitter receptor response function. Assuming a linear cel-
lular response (� = 1 in Eq. 2), the binding of a neurotransmitter to its receptor complex
follows the law of mass action and leads to an asymptotic response, regardless of the level
of input stimulation (Input Value). The dissociation constant, Kd , is the level at which 50%
of the receptor is occupied. In this plot, Rmax = 1.

Consider the interpretation of Equation 2 under which z represents the objec-
tive quantity of some stimulus, but this quantity serves as an input to a specific
neural system, for example, the ventral tegmental dopamine system, whose
response would be subjectively experienced as utility. This is the strongest
possible interpretation of Equation 2. In essence, this says that the response
of the dopamine system corresponds to the subjective experience of utility.
If utility determines decisions, then the correspondence to dopamine system
activity means that dopamine release would govern decision making. If we
assume that � = 1, namely the stimulus-response relationship of the neuron
is linear, then Equation 2 leads to the well-known concave utility function7

(FIG. 1). Although the classical form for the utility function is strictly mono-
tonically increasing and concave, which has the property of diminishing but
strictly positive marginal returns, the hyperbolic form given by the law of mass
action has the property of asymptotically approaching Rmax. This corresponds
to the existence of a saturation point where increasing the quantity of stimulus
no longer yields greater utility.

Most neural systems detect transient changes, as in the visual system, in
which neurons respond to changing levels of stimulation (as opposed to tonic,
long-term levels of stimulation). A large body of data on the properties of the
dopamine system also suggests that these neurons respond to deviations in
reward prediction as opposed to absolute levels of reward.8–10 Thus it seems
reasonable to cast Equation 2 as a response to a change in future reward ex-
pectations:

Response =
[

Rmax
dz
dt

Kd + dz
dt

]�

(3)
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Thus, the greater the rate of change of expected value, the greater the re-
sponse, up to the limit imposed by Rmax. The temporal derivative, dz/dt, can
be integrated over an arbitrary time interval to yield the corresponding inte-
grated response. Equation 3 can also be applied to negative rewards, or losses.
Losses are likely governed by different neural systems, although dopamine
activity has been shown to decrease when expected rewards are not received.
Allowing Rmax to take on different magnitudes for gains and losses yields the
well-known S-shaped value function postulated by prospect theory2 (FIG. 2).
The exponent, �, describes the transformation of receptor activation into a
cellular response. A cellular system that is weakly coupled to the receptor is
characterized by � > 1, and, conversely, a strongly coupled system has � < 1.3

Because the degree of receptor-coupling affects the dose-response relationship,
� also affects the shape of the value function (FIG. 3).

EVIDENCE

Our theory makes a strong assumption: that the response of a specific neu-
ral system is the biophysical carrier of utility. Although it is possible that
“utility” is a distributed mental construct, without physical instantiation in a
single location, it is worthwhile examining the evidence for the stronger pre-
diction. The vast majority of the experimental work on the reward system has
focused on the dopamine system and the brain regions to which it projects.
To test Equation 3 in an experimental system, one would need to vary either
the magnitude of rewards delivered to a test subject, or vary the contingen-
cies such that the subject’s expectations are changing. Both have been done.
Monkeys, for example, can discriminate between the magnitudes of a liquid

FIGURE 2. The neurotransmitter receptor response function when the input is consid-
ered as a change in value from an arbitrary baseline. Here, the Rmax for losses was set at
twice the Rmax for gains. The function captures all the salient characteristics of the value
function postulated in the prospect theory.
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FIGURE 3. The effect of the cellular response exponent, �, on the neurotransmitter-
response function. Decreasing � < 1 implies highly efficient coupling of the cellular re-
sponse to the neurotransmitter receptor complex and results in a more convexoconcave
response function. Increasing � > 1 implies inefficient coupling and results in a more
complex response function with three inflection points.

reward based on the volume received. This is also reflected in corresponding
levels of activity change in the midbrain dopamine neurons as well as their
target sites in the striatum.11,12 Importantly, the dopamine response displays
a concave functional form, and changes in phasic dopamine activity correlate
with future decision making.13 Although there are comparatively fewer neu-
roimaging data in humans at a sufficient range of reward values, a recent study
in which the dopamine system activity was either augmented by treatment
with the dopamine precursor, L-DOPA, or blocked with the receptor antago-
nist, haloperidol, corresponding changes were observed in the fMRI BOLD
response in the striatum.14 Numerous fMRI studies have shown correspond-
ing changes in striatal activity, that is, at least, monotonic in the magnitude
of expected monetary reward.15–19 These studies, however, have not offered a
sufficient range of rewards to assess the curvature of the function.

A milder interpretation of Equation 3 is that value and utility are mental
constructs that occur through a complex set of psychological operations, and
because of the complexity, are distributed across different brain regions. Re-
ceptor theory still applies in this scenario because neurons adhere to physical
laws governing molecule movement. But the one-to-one correspondence with
value breaks down because the input to each disparate brain region might repre-
sent only one aspect of the process of computing value. For example, a visually
presented stimulus, say in the form of a number, must first be processed by the
visual system before being passed on to any putative value system. Low-level
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visual processing might reflect some aspects of value although it would be
loose correlation at best. Animal studies use conditioning paradigms, so that
the visual stimulus, in addition to its geometric properties, comes to contain
value information through associative learning mechanisms. Value becomes
reflected not only in dopamine neurons but parietal neurons as well.20–22 It
is not yet possible to determine which way value information flows between
these two systems, but regardless of the direction, the information becomes
transformed by the above equations.

The nonlinearity of value functions is generally accepted as an empirical
truism. Most explanations for the nonlinearity derive from psychological or
cognitive distortions, which include framing effects, loss aversion, status quo
bias, etc.23,24 Many of the same distortions, however, have been demonstrated
in other animals. A well-known motivating stimulus, that has behavioral ef-
fects akin to value, is electrical stimulation of certain brain regions.25 Brain-
stimulation reward (BSR) can be titrated to replace conventional exogenous
rewards like food. BSR, however, shows the same relationship to behavior as
do other rewards; namely, as both the magnitude of electrical stimulation and
its frequency are increased, the behavioral effect approaches an asymptote.26

The role of dopamine in BSR is complicated by the fact that electrical stimula-
tion of specific brain regions propagates in multiple directions, some of which
eventually reach the midbrain dopamine neurons. Although BSR is more com-
plicated than simply stimulating the dopamine system, the pure physicality
of BSR eliminates the role of cognitive heuristics in the determination of the
value function. And although multiple neurotransmitter systems are involved,
they each obey receptor occupancy constraints.

CONCLUSIONS

To our knowledge, the physical constraints imposed by receptor occupancy
theory have never been proposed as the cause of the functional forms asso-
ciated with economic utility theories. The commonality across many species
for concave forms of utility suggests a common biological mechanism that is
independent of the cognitive heuristics used by each animal. Of course, the fact
that neurotransmitters and receptors display binding kinetics with a functional
form similar to that postulated by economic theory may be a coincidence. The
main argument against such a causal relationship derives from the multiplicity
of systems in the brain that operate in parallel to coordinate decision making.
Nonlinearities in one system may be offset by nonlinearities in another sys-
tem. However, the strength of our proposal is that it is testable. Manipulation
of specific receptors in the context of decision making, either through phar-
macological means or through genetic approaches, can isolate the contribution
of each neurotransmitter receptor complex to the behaviorally derived value
function.
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